Protein farnesylation inhibitors cause donut-shaped cell nuclei attributable to a centrosome separation defect.

نویسندگان

  • Valerie L R M Verstraeten
  • Lana A Peckham
  • Michelle Olive
  • Brian C Capell
  • Francis S Collins
  • Elizabeth G Nabel
  • Stephen G Young
  • Loren G Fong
  • Jan Lammerding
چکیده

Despite the success of protein farnesyltransferase inhibitors (FTIs) in the treatment of certain malignancies, their mode of action is incompletely understood. Dissecting the molecular pathways affected by FTIs is important, particularly because this group of drugs is now being tested for the treatment of Hutchinson-Gilford progeria syndrome. In the current study, we show that FTI treatment causes a centrosome separation defect, leading to the formation of donut-shaped nuclei in nontransformed cell lines, tumor cell lines, and tissues of FTI-treated mice. Donut-shaped nuclei arise during chromatin decondensation in late mitosis; subsequently, cells with donut-shaped nuclei exhibit defects in karyokinesis, develop aneuploidy, and are often binucleated. Binucleated cells proliferate slowly. We identified lamin B1 and proteasome-mediated degradation of pericentrin as critical components in FTI-induced "donut formation" and binucleation. Reducing pericentrin expression or ectopic expression of nonfarnesylated lamin B1 was sufficient to elicit donut formation and binucleated cells, whereas blocking proteasomal degradation eliminated FTI-induced donut formation. Our studies have uncovered an important role of FTIs on centrosome separation and define pericentrin as a (indirect) target of FTIs affecting centrosome position and bipolar spindle formation, likely explaining some of the anticancer effects of these drugs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Permanent farnesylation of lamin A mutants linked to progeria impairs its phosphorylation at serine 22 during interphase

Mutants of lamin A cause diseases including the Hutchinson-Gilford progeria syndrome (HGPS) characterized by premature aging. Lamin A undergoes a series of processing reactions, including farnesylation and proteolytic cleavage of the farnesylated C-terminal domain. The role of cleavage is unknown but mutations that affect this reaction lead to progeria. Here we show that interphase serine 22 ph...

متن کامل

Unusual centrosome cycle in Dictyostelium: correlation of dynamic behavior and structural changes.

Centrosome duplication and separation are of central importance for cell division. Here we provide a detailed account of this dynamic process in Dictyostelium. Centrosome behavior was monitored in living cells using a gamma-tubulin-green fluorescent protein construct and correlated with morphological changes at the ultrastructural level. All aspects of the duplication and separation process of ...

متن کامل

Akt regulates centrosome migration and spindle orientation in the early Drosophila melanogaster embryo

Correct positioning and morphology of the mitotic spindle is achieved through regulating the interaction between microtubules (MTs) and cortical actin. Here we find that, in the Drosophila melanogaster early embryo, reduced levels of the protein kinase Akt result in incomplete centrosome migration around cortical nuclei, bent mitotic spindles, and loss of nuclei into the interior of the embryo....

متن کامل

An Essential Farnesylated Kinesin in Trypanosoma brucei

Kinesins are a family of motor proteins conserved throughout eukaryotes. In our present study we characterize a novel kinesin, Kinesin(CaaX), orthologs of which are only found in the kinetoplastids and not other eukaryotes. Kinesin(CaaX) has the CVIM amino acids at the C-terminus, and CVIM was previously shown to be an ideal signal for protein farnesylation in T. brucei. In this study we show K...

متن کامل

Targeting the kinesin spindle protein: basic principles and clinical implications.

Kinesin spindle protein (KSP), a member of the kinesin superfamily of microtubule-based motors, plays a critical role in mitosis as it mediates centrosome separation and bipolar spindle assembly and maintenance. Inhibition of KSP function leads to cell cycle arrest at mitosis with the formation of monoastral microtubule arrays, and ultimately, to cell death. Several KSP inhibitors are currently...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 108 12  شماره 

صفحات  -

تاریخ انتشار 2011